Уржумов Д.В., Кревецкий А.В. —
Исследование достаточной статистики различения групповых точечных объектов с цепочечной и облачной структурами по форме их графов иерархической группировки
// Программные системы и вычислительные методы. – 2014. – № 3.
– 和。 374 - 386.
DOI: 10.7256/2454-0714.2014.3.13646
阅读文章
注释,注释: Выполнена параметризация моделей локационных изображений групп точечных объектов типов «цепочка» и «скопление». Исследованы вероятностные характеристики достаточной статистики их различения, необходимые для выбора решающих правил, оптимальных по заданным критериям в различных условиях наблюдения.
Рассмотрена методика моделирования наблюдаемых искажений эталонных цепочек, которая все многообразие условий наблюдения позволяют свести к двум параметрам – кривизне траектории цепочки и уровню отклонений наблюдаемых координат точечных объектов от их эталонных положений. Такая методика позволяет формализовать и снизить трудоемкость сопоставления конкурирующих методов опознавания цепочек.
Рассмотрены особенности программного комплекса для тестирования конкурирующих алгоритмов различения групповых объектов.
В качестве статистики различения предложено отношение диаметра графа иерархической группировки обнаруженных объектов к суммарной длине ребер этого графа. На основе данных математических моделей методом статистических испытаний получены выборочные оценки законов распределения вероятностей достаточной статистики различения для различных значений параметров моделей. Свойства рассмотренного метода различения цепочек и скоплений с учетом меньшей его трудоемкости делают целесообразным его использование при построении систем распознавания групповых точечных объектов в условиях высокой априорной неопределенности относительно параметров условий наблюдения при мощности групп не менее 10. Предложенная архитектура программного комплекса позволяет тестировать алгоритмы распознавания с различной по числу и типу параметров сигнатурой.