Гришенцев А.Ю., Коробейников А.Г., Югансон А.Н. —
Вычислительная оптимизация взаимных преобразований цветовых пространств на базе арифметики с фиксированной точкой
// Кибернетика и программирование. – 2017. – № 4.
– 和。 84 - 96.
DOI: 10.25136/2644-5522.2017.4.24005
URL: https://e-notabene.ru/kp/article_24005.html
阅读文章
注释,注释: В данной работе представлены результаты по систематизации методов вычислительной оптимизации преобразования цветовых пространств на базе применения арифметики с фиксированной точкой. Сформулированы задачи и проанализированы основные проблемы возникающие в случае вычислительной оптимизации в процессе образования цветовых пространств с точки зрения повышения быстродействия. Изложены принципы перехода от формата с плавающей к формату с фиксированной точкой. Приведён пример и анализ вычислительной оптимизации при взаимном преобразовании RGB и Y709CbCr. В данной работе рассмотрен метод вычислительной оптимизации преобразования цветовых пространств на базе применения арифметики с фиксированной точкой При применении рассмотренного принципа практической реализации время вычислений для изображения 4134x2756 на процессоре Intel Core 2 Duo сократилось в 18-ть раз. Такое повышение производительности является очень значимым. Не составляет труда применить указанный подход к прочим подобным вычислениям, особенно на современных 64-х и 128-ми разрядных процессорах, когда необходимые значения умещаются в один процессорный регистр.
Abstract: In their article the authors provide their results on systematization of methods for computational optimization of the transformation of color spaces based upon the application of fixed-point arithmetic. The authors formulate the goals and analyze the key problems arising in the situation of computational optimization in the process of color space formation from the standpoint of the speed of operation increase. The principles of transition from a floating point format to a format with a fixed point are stated. The authors also provide an example for the analysis of computational optimization for the mutual transformation of RGB and Y709CbCr. In this article the authros consider the method of computational optimization of the transformation of color spaces based on the application of fixed-point arithmetic. When applying the considered principle of practical implementation, the computation time for an image of 4134x2756 on an Intel Core 2 Duo processor becomes 18 times less. This is a very significant increase in productivity. It is not too difficult to apply this approach to other similar calculations, especially on modern 64-bit and 128-bit processors, when the necessary values fit into a single processor register.